Optimisation of convolutional neural network architecture using genetic algorithm for the prediction of adhesively bonded joint strength
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The classical method of optimising structures for strength is computationally expensive due to the requirement of performing complex non-linear finite element analysis (FEA). This study aims to optimise an artificial neural network (ANN) architecture to perform the task of predicting the strength of adhesively bonded joints in place of non-linear FEA. A manual multi-objective optimisation was performed to find a suitable ANN architecture design space. Then a genetic algorithm optimisation of the reduced design space was conducted to find an optimum ANN architecture. The generated optimum ANN architecture predicts efficiently the strength of adhesively bonded joints to a high degree of accuracy in comparison with the legacy method using FEA with a 93% savings in computational cost.