CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements

Date published

2017-04-03

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

European Geosciences Union / Copernicus Publications

Department

Type

Article

ISSN

1867-1381

Format

Citation

Sonderfeld, H., Bösch, H., Jeanjean, A. P. R., Riddick, S. N., Allen, G., Ars, S., Davies, S., Harris, N., Humpage, N., Leigh, R., and Pitt, J.: CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements, Atmospheric Measurement Techniques, Vol. 10, Issue 10, 2017, pp. 3931-3946

Abstract

Globally, the waste sector contributes to nearly a fifth of anthropogenic methane emitted to the atmosphere and is the second largest source of methane in the UK. In recent years great improvements to reduce those emissions have been achieved by installation of methane recovery systems at landfill sites and subsequently methane emissions reported in national emission inventories have been reduced. Nevertheless, methane emissions of landfills remain uncertain and quantification of emission fluxes is essential to verify reported emission inventories and to monitor changes in emissions. Here we present a new approach for methane emission quantification from a complex source like a landfill site by applying a Computational Fluid Dynamics (CFD) model to calibrated in situ measurements of methane as part of a field campaign at a landfill site near Ipswich, UK, in August 2014. The methane distribution for different meteorological scenarios is calculated with the CFD model and compared to methane mole fractions measured by an in situ Fourier Transform Infrared (FTIR) spectrometer downwind of the prevailing wind direction. Assuming emissions only from the active site, a mean daytime flux of 0.83 mg m−2 s−1, corresponding to 53.26 kg h−1, was estimated. The addition of a secondary source area adjacent to the active site, where some methane hotspots were observed, improved the agreement between the simulated and measured methane distribution. As a result, the flux from the active site was reduced slightly to 0.71 mg m−2 s−1 (45.56 kg h−1), at the same time an additional flux of 0.32 mg m−2 s−1 (30.41 kg h−1) was found from the secondary source area. This highlights the capability of our method to distinguish between different emission areas of the landfill site, which can provide more detailed information about emission source apportionment compared to other methods deriving bulk emissions.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution 3.0 International (CC BY 3.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements

Funder/s