Symbiotic nitrogen fixation enhancement due to magnetite nanoparticles

dc.contributor.advisorRamsden, J. J.
dc.contributor.authorGhalamboran, M. R.
dc.date.accessioned2014-01-28T12:46:57Z
dc.date.available2014-01-28T12:46:57Z
dc.date.issued2011-01
dc.description.abstractPopulation pressure on food production motivates the search for new ways to increase the productivity of arable land, especially land rendered marginal by salinity or aridity. The global thesis motivating this work is that nanotechnology can benefit agriculture. My specific thesis is that that part of nanotechnology concerned with nanoparticle production can benefit soybean yield. I have focused on symbiotic nitrogen fixation, and systematically investigated the effects thereon of magnetite nanoparticles introduced into the rhizosphere.My main finding is that the presence of these nanoparticles increases nodulation -- both the number of nodules and the size of individual nodules. Since the experiments were carried out on plants provided with minimal nutrients, there was no corresponding increase in vegetative growth. Some evidence was obtained for the nanoparticles enhancing the "molecular dialogue" between soybean root and the Bradyrhizobia that become incorporated in the nodules. A secondary finding is that the nanoparticles enhance the growth rate of Bradyrhizobia in culture, which is advantageous for the preparation of inocula. Furthermore, coating soybean seeds with nanoparticles and Bradyrhizobia prior to planting enhances survival of the bacteria, and therefore increases the efficiency of subsequent nodulation.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/8172
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University 2011. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.en_UK
dc.titleSymbiotic nitrogen fixation enhancement due to magnetite nanoparticlesen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mohammad_Ghalamboran_Thesis_2011.pdf
Size:
3.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: