Microstructure and Mechanical Properties of Inconel 718 and Inconel 625 Produced Through The Wire + Arc Additive Manufacturing Process
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In developing the wire + arc additive manufacturing (WAAM) process for heat resistant alloys used in high-speed flight applications, structures were built from nickel-based superalloys Inconel 718 (IN718) and Inconel 625 (IN625). In this paper, wall structures were deposited in both superalloys, using a plasma transferred arc process. The microstructure was analysed optically and under SEM; both alloys were seen to be of typical dendritic structure with long columnar grains, with little variation between the alloys. The findings suggest that the structures included significant segregation of heavy metals, with potential Laves phases and δ-phases also found across the alloys, which showed significantly more segregation of Nb and Mo at the grain boundaries and inter-dendritic regions. The alloys also underwent room temperature mechanical testing, in addition to this IN625 specimens were tested after a solutionising and ageing treatment. Hardness measurements indicated that in general the WAAM process has the effect of increasing material hardness by approximately 10%, when compared to wrought alloy in a solutionised state. In IN625 the heat-treated specimens showed an increase in hardness of around 6%, when compared with its as-deposited condition. Elongation in IN625 showed much greater values. Overall, IN718 showed a greater strength with less elongation than IN625. A comparison between both alloys and their stated maximum UTS and YS values from literature revealed that WAAM built IN718 and IN625 in its as-deposited condition can achieve just over half the maximum achievable UTS, with no post-process treatment. The heat-treatment process tested in IN625 marginally reduced the gap in UTS performance by 3.5%.