Economic viability assessment of NASA's blended wing body N3-X aircraft
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Numerous novel aircraft concepts are under development that aim to achieve dramatic increases in efficiency and reductions in emissions in comparison to current aircraft. Research into these concepts typically focuses on performance aspects to establish whether the aircraft will be capable of meeting developmental goals. However, the final goal of such concepts is to progress to viable commercial products. Economic viability assessments are therefore an integral part of the development process to ensure a sustainable industry. The key question to address is whether a high efficiency aircraft concept can translate into an attractive product from an economic perspective.
This research performed an economic viability assessment of NASA's N3-X aircraft, a blended wing body aircraft with a distributed boundary layer ingesting propulsion system. The sensitivity of the aircraft's direct operating cost to changes in acquisition price and maintenance cost was predicted to establish maximum cost margins for the aircraft. In a May 2017 fuel price scenario, the N3-X could be no more than 25% more expensive than the baseline aircraft to remain economically viable. Introducing a carbon tax or fuel price jump widens the margin for increased costs. Aircraft cost estimates for the aircraft predict an acquisition cost from 11{37% more expensive than the baseline. In combination with the direct operating cost sensitivity analysis, the N3-X is predicted to need to capture 30% of the aircraft market up to 2035.