Shock behaviour of a phenolic resin

Date published

2011-12-31T00:00:00Z

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science Business Media

Department

Type

Article

ISSN

0022-2461

Format

Citation

Abstract

Phenolic resins are used in many aspects of everyday life, e.g. as the matrix material for carbon fibre laminates used in the aerospace industry. Consequently detailed knowledge of this material, especially while under shock loading, is extremely useful for the design of components that could be subjected to impact during their lifespan. The shock Hugoniot equation of state for phenolic resin (Durite SC-1008), with initial density of 1.18 gcm −3 have been determined using the plate-impact technique with in situ manganin stress gauges. The Hugoniot equation in the shock velocity-particle velocity plane was found to be non- linear in nature with the following equation: Us = 2.14 + 3.79up - 1.68up2. Further, the Hugoniot in the pressure-volume plane was observed to largely follow the hydrostatic curve. Lateral gauge measurements were also obtained. An ANSYS Autodyn TM 2D model was used to investigate the lateral stress behaviour of the SC-1008. A comparison of the Hugoniot elastic limit calculated from the shear strength and measured sound speeds gave reasonable agreement with a value of 0.66 ± 0.35 GPa obtain

Description

Software Description

Software Language

Github

Keywords

shock, plate impact, Hugoniot, Equation of state, HEL, polymer, lateral gauges, AUTODYN.

DOI

Rights

Relationships

Relationships

Supplements

Funder/s