Multidisciplinary optimisation of aero-engines using genetic algorithms and preliminary design tools

dc.contributor.advisorSingh, R.
dc.contributor.authorWhellens, Matthew W.
dc.date.accessioned2016-09-12T08:36:39Z
dc.date.available2016-09-12T08:36:39Z
dc.date.issued2003-04
dc.description.abstractThis study investigates a novel methodology for the preliminary design of aeroengines. This involves the modelling of the disciplines that affect the engine's requirements and constraints, their implementation in software format and their coupling into a single unit. Subsequently, this unit is interfaced with an optimiser software. The resulting multidisciplinary optimisation (MDO) tool allows the automation of the traditional, human-based preliminary design process. The investigation of the above-mentioned novel methodology is carried out through the development of a "pilot" MDO tool and its subsequent utilisation in three case studies, characterised by different optimisation scenarios. The selection of each case study is motivated by current research questions, such as aviation's contribution to climate change or the attractiveness of specific novel propulsion concepts. The outcome of the pilot MDO study is considered successful and has been well received by several academic and industrial aero-engine organisations. The choice of the disciplines and of their modelling fidelity allowed a realistic representation of the main disciplinary interactions and tradeoffs that characterise the important phase of preliminary design. The computational effort involved in the solution of the optimisation studies was found to be acceptable, and no major reprogramming was required when different optimisation scenarios were considered. The case studies were investigated with an ease and comprehensiveness that would not have been achievable through a human-based parametric analysis. The positive experience with the pilot MDO tool suggests that an automated methodology for the preliminary design of aero-engines is feasible, applicable and valuable. Its adoption can provide substantial advantages over the traditional human-based approach, such as a reduction in human effort, costs and risk. From this perspective, the pilot study constitutes a first step towards the development of a full-scale MDO tooL usable by aero-engine manufacturers. In the near future, issues like climate change could drive significant modifications in airframe and engine design. A preliminary design MDO tool is therefore timely, and has the potential of making a significant contribution.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/10510
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 2003. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.titleMultidisciplinary optimisation of aero-engines using genetic algorithms and preliminary design toolsen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Whellens_M_W_2003.zip
Size:
14.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: