The critical raw materials in cutting tools for machining applications: a review

dc.contributor.authorRizzo, Antonella
dc.contributor.authorGoel, Saurav
dc.contributor.authorGrilli, Maria Luisa
dc.contributor.authorIglesias, Roberto
dc.contributor.authorJaworska, Lucyna
dc.contributor.authorLapkovskis, Vjaceslavs
dc.contributor.authorNovak, Pavel
dc.contributor.authorPostolnyi, Bogdan O.
dc.contributor.authorValerini, Daniele
dc.date.accessioned2020-03-19T11:55:24Z
dc.date.available2020-03-19T11:55:24Z
dc.date.issued2020-03-18
dc.description.abstractA variety of cutting tool materials are used for the contact mode mechanical machining of components under extreme conditions of stress, temperature and/or corrosion, including operations such as drilling, milling turning and so on. These demanding conditions impose a seriously high strain rate (an order of magnitude higher than forming), and this limits the useful life of cutting tools, especially single-point cutting tools. Tungsten carbide is the most popularly used cutting tool material, and unfortunately its main ingredients of W and Co are at high risk in terms of material supply and are listed among critical raw materials (CRMs) for EU, for which sustainable use should be addressed. This paper highlights the evolution and the trend of use of CRMs) in cutting tools for mechanical machining through a timely review. The focus of this review and its motivation was driven by the four following themes: (i) the discussion of newly emerging hybrid machining processes offering performance enhancements and longevity in terms of tool life (laser and cryogenic incorporation); (ii) the development and synthesis of new CRM substitutes to minimise the use of tungsten; (iii) the improvement of the recycling of worn tools; and (iv) the accelerated use of modelling and simulation to design long-lasting tools in the Industry-4.0 framework, circular economy and cyber secure manufacturing. It may be noted that the scope of this paper is not to represent a completely exhaustive document concerning cutting tools for mechanical processing, but to raise awareness and pave the way for innovative thinking on the use of critical materials in mechanical processing tools with the aim of developing smart, timely control strategies and mitigation measures to suppress the use of CRMs.en_UK
dc.identifier.citationRizzo A, Goel S, Grilli ML, et al., (2020) The critical raw materials in cutting tools for machining applications: a review> Materials, Volume 13, Issue 6, March 2020, Article number 1377en_UK
dc.identifier.issn1996-1944
dc.identifier.urihttps://doi.org/10.3390/ma13061377
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/15310
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectcritical raw materialsen_UK
dc.subjectcutting toolsen_UK
dc.subjectnew materialsen_UK
dc.subjectnew machining methodsen_UK
dc.subjectmodelling and simulationen_UK
dc.titleThe critical raw materials in cutting tools for machining applications: a reviewen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
cutting_tools_for_machining_applications-2020.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: