Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors

dc.contributor.authorCookney, Joanna
dc.contributor.authorMcLeod, Andrew J.
dc.contributor.authorMathioudakis, Vasileios
dc.contributor.authorNcube, Philani
dc.contributor.authorSoares, Ana
dc.contributor.authorJefferson, Bruce
dc.contributor.authorMcAdam, Ewan J.
dc.date.accessioned2016-01-05T15:35:00Z
dc.date.available2016-01-05T15:35:00Z
dc.date.issued2015-12
dc.description.abstractHollow fibre membrane contactor (HFMC) systems have been studied for the desorption of dissolved methane from both analogue and real anaerobic effluents to ascertain process boundary conditions for separation. When using analogue effluents to establish baseline conditions, up to 98.9% methane removal was demonstrated. Elevated organic concentrations have been previously shown to promote micropore wetting. Consequently, for anaerobic effluent from an upflow anaerobic sludge blanket reactor, which was characterised by a high organic concentration, a nonporous HFMC was selected. Interestingly, mass transfer data from real effluent exceeded that produced with the analogue effluent and was ostensibly due to methane supersaturation of the anaerobic effluent which increased the concentration gradient yielding enhanced mass transfer. However, at high liquid velocities a palpable decline in removal efficiency was noted for the nonporous HFMC which was ascribed to the low permeability of the nonporous polymer provoking membrane controlled mass transfer. For anaerobic effluent from an anaerobic membrane bioreactor (MBR), a microporous HFMC was used as the permeate comprised only a low organic solute concentration. Mass transfer data compared similarly to that of an analogue which suggests that the low organic concentration in anaerobic MBR permeate does not promote pore wetting in microporous HFMC. Importantly, scale-up modelling of the mass transfer data evidenced that whilst dissolved methane is in dilute form, the revenue generated from the recovered methane is sufficient to offset operational and investment costs of a single stage recovery process, however, the economic return is diminished if discharge is to a closed conduit as this requires a multi-stage array to achieve the required dissolved methane consent of 0.14 mg l−1.en_UK
dc.description.sponsorshipYorkshire Water; Severn Trent Water; Anglian Water; Northumbrian Water; EPSRCen_UK
dc.identifier.citationCookney, J., McLeod, A., Mathioudakis, V., Ncube, P., Soares, A., Jefferson, B. and McAdam, E.J. 2015. Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. Journal of membrane science, 502, pages 141-150. DOI: 10.1016/j.memsci.2015.12.037en_UK
dc.identifier.cris5942518
dc.identifier.issn0376-7388
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/9622
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.en_UK
dc.subjectStrippingen_UK
dc.subjectDegassingen_UK
dc.subjectDesorptionen_UK
dc.subjectFrackingen_UK
dc.subjectFugitive emissionen_UK
dc.subjectGreenhouse gasen_UK
dc.titleDissolved methane recovery from anaerobic effluents using hollow fibre membrane contactorsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissolved_methane_recovery_from_anaerobic_effluents_using_hollow_fibre_membrane_contactors-2015.pdf
Size:
1.75 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: