Multidisciplinary Optimisation Framework for Minimum Rotorcraft Fuel and Air Pollutants at Mission Level

dc.contributor.authorLinares, Carlos-
dc.contributor.authorLawson, Craig P.-
dc.contributor.authorSmith, Howard-
dc.date.accessioned2014-01-24T05:01:46Z
dc.date.available2014-01-24T05:01:46Z
dc.date.issued2013-07-31T00:00:00Z-
dc.description.abstractHelicopters play a unique role in modern aviation providing a varied range of benefits to society and satisfying the need for fast mobility. However, environmental concerns associated with the operation of rotorcraft have increased due to envisaged growth of helicopter operations. New rotorcraft designs, innovative aero engines and all-electrical systems, which may take decades to be in service, are being developed in order to diminish rotorcraft footprint on environment. However, since there is a large number of polluting rotorcraft that are in use and will only gradually be replaced, in the near-term, improvements to minimise air quality degradation may also be possible from better use of existing rotorcraft by focusing on mission profile management. A multidisciplinary framework, intended to generate outputs for estimating rotorcraft block fuel burn and emissions, was developed. Outcomes generated with this tool were, subsequently, the basis to carry out a parametric study for assessment of light single-engine rotorcraft environmental impact, in terms of fuel burn and emissions. Single and multi-objective optimisation for minimum fuel consumption and air pollutant emissions was part of this research as well.en_UK
dc.identifier.citationCarlos Linares, Craig P. Lawson, Howard Smith, Multidisciplinary Optimisation Framework for Minimum Rotorcraft Fuel and Air Pollutants at Mission Level, The Aeronautical Journal, Volume 117, Issue 1193, Pages 749-767.
dc.identifier.issn0001-9240-
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/8118
dc.language.isoen_UK-
dc.publisherRoyal Aeronautical Societyen_UK
dc.rightsReproduced by kind permission of The Royal Aeronautical Society's Aeronautical Journal.
dc.titleMultidisciplinary Optimisation Framework for Minimum Rotorcraft Fuel and Air Pollutants at Mission Levelen_UK
dc.typeArticle-

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Multidisciplinary_Optimisation_Framework_for_Minimum_Rotorcraft_Fuel-2013.pdf
Size:
1.61 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
18 B
Format:
Plain Text
Description: