Design overview of high pressure dense phase CO2 pipeline transport in flow mode

Date published

2013-08-05

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1876-6102

Format

Citation

Kumar Patchigolla, John E. Oakey, Design Overview of High Pressure Dense Phase CO2 Pipeline Transport in Flow Mode, Energy Procedia, Volume 37, 2013, pp3123-3130.

Abstract

In open literature, there is little information available with regards to the engineering and technological issues for material corrosion, in relation to high pressure supercritical CO2 pipeline transport from single point sources, such as the power industry. A typical CO2 pipeline is designed to operate at high pressure in the dense phase. However, it is evident that although there is considerable experience of testing materials in lower pressure gaseous CO2 in the oil and gas industry, there is little understanding of the behaviour of pipeline materials when in contact with impure CO2 captured either from power plants or the oil and gas industry.

In this particular project development, a dynamic dense phase CO2 corrosion rig has been built (conditions: ∼85 bar, 40 °C and up to 5 l/min flow rate) in flow mode, to understand the effect of impurities (SO2, O2, H2, NO2 & CO) present in captured CO2 on the pipeline transport materials. This unique facility in the UK was developed via the MATTRANS project funded by the E.ON-EPSRC strategic partnership (EP/G061955/1). The test rig includes different metallic materials (X grade steel: X60, X70 and X100) to assess the corrosion of pipelines, and different geometry components (tubes, plates, charpy and tensile coupons), to assess ageing and decompression behavior of polymeric seals (Neoprene, fluorocarbon, ethylene and Buna N) under water-saturated dense phase CO2 with different impurity concentrations (0.05 mol % SO2; 4 mol % O2; 2 mol % H2; 0.05 mol % NO2; 1 mol % CO). The dynamic data generated from this dense phase CO2 corrosion rig will give vital information with regards to pipeline suitability and lifetimes, when operating with dense CO2.

Description

Software Description

Software Language

Github

Keywords

Pipeline transport, material issues, dense phase CO2, polymeric seals

DOI

Rights

Attribution-Non-Commercial-No Derivatives 3.0 Unported (CC BY-NC-ND 3.0). You are free to: Share — copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No Derivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Resources

Funder/s