Optical fibre long period grating based selective vapour sensing of volatile organic compounds

Date published

2010-01-07T00:00:00Z

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science B.V., Amsterdam.

Department

Type

Article

ISSN

0925-4005

Format

Citation

S.M. Topliss, S.W. James, F. Davis, S.P.J. Higson, R.P. Tatam, Optical fibre long period grating based selective vapour sensing of volatile organic compounds, Sensors and Actuators B: Chemical, Volume 143, Issue 2, 7 January 2010, Pages 629-634

Abstract

The chemical sensing capabilities of an optical fibre long period grating (LPG) coated with a functional material are explored. The LPG period and coating thickness are chosen such that the mode transition region, characteristic of LPGs coated with nanostructured coatings, corresponds with the phase matching turning point, ensuring optimum sensitivity. The functional material is a calixarene, which is shown to exhibit sensitivity to the aromatic compounds toluene and benzene, while being relatively insensitive to the aliphatic hydrocarbon hexane. A nanoscale cavity in the calixarene molecule entraps the VOC molecule, thereby altering the refractive index of the coating and influencing the transmission spectrum of the LPG. A sensitivity to toluene of 231 ppmv has been achieved, based on a spectrometer resolution of 0.3 nm. This is a weak molecular interaction thereby ensuring the sensor gives a reversible response when the VOC is removed. The recovery time is of the order of 15 s.

Description

Software Description

Software Language

Github

Keywords

Optical fibre sensor, Long period grating, VOC, Calixarene

DOI

Rights

Relationships

Relationships

Supplements

Funder/s