Energy absorption for crashworthiness in carbon-fibre braided composite structures

dc.contributor.advisorMills, Andrew
dc.contributor.authorLazarus, Simon David
dc.date.accessioned2010-06-19T15:25:28Z
dc.date.available2010-06-19T15:25:28Z
dc.date.issued2004
dc.description.abstractIn this investigation the effects of material, structural and testing parameters of carbon epoxy braided composite tubes were analysed with respect to their performance in crush and impact conditions. An original method of manufacturing the composite tubes with vacuum infusion together with an expandable foam core to form multi-cellular structures was used. Low cost, 24k tow carbon fibre braids were used and their performance was compared with that of the more expensive l2k tow size fibres. The specimens produced were axially crushed at constant quasi-static low velocities and at higher impact velocities using an instrumented falling weight machine. Load displacement data gathered from such tests were used to evaluate the test specimens with respect to their specific energy absorption values. The effects of a number of parameters including fibre tow size, braid architecture, resin content and loading type were evaluated. From the experimental results analysed from the test specimens it can be concluded that: - The 24k fibre showed lower specific energy absorption values than specimens made from l2k fibre. Epoxy resin content rather than epoxy resin type can significantly affect the specific energy absorption values. In general, specimens tested in impact loading exhibited lower specific energy absorption values than the same specimens test in quasi-static crush. A reasonably good correlation between global density and specific energy absorption for the type of structures examined was founden_UK
dc.identifier.urihttp://hdl.handle.net/1826/4450
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 2004. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.subjectCrushen_UK
dc.subjectImpacten_UK
dc.subjectCoretexen_UK
dc.titleEnergy absorption for crashworthiness in carbon-fibre braided composite structuresen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Simon_David_Lazarus_Thesis_2004.pdf
Size:
52.18 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: