Hydrophobicity in polysaccharide gelation

dc.contributor.advisorMorris, E. R.
dc.contributor.authorJones, Amanda Kay
dc.date.accessioned2010-10-04T14:31:49Z
dc.date.available2010-10-04T14:31:49Z
dc.date.issued1992-11
dc.description.abstractThe role of hydrophobic substituents on the gelation mechanism of highly esterified pectin and the cellulose derivatives methylcellulose and hydroxypropylmethylcellulose (HPMC) has been explored by monitoring the behaviour of the amphiphilic polysaccharides in varying combinations of an ethylene glycoVwater solvent. The gelling ability (mechanical spectroscopy, visual observation) of very highly esterified (- 100%) pectin in high concentrations of ethylene glycol (>60%) is greatly reduced, however, the polymer still undergoes conformational ordering (CD, OR). A model for gel formation involving a two stage process has been proposed, comprising adoption of the ordered structure stabilised by hydrogen bonding between OH groups of contiguous polysaccharide chains, followed by (or coincident with) aggregation of the ordered sequences by 'hydrophobic' clustering of the fundamental structural subunits to form the three dimensional gel network. It has been found that ethylene glycol promotes the fIrst stage (ordering) but is antagonistic to the second (aggregation). The reversibility (mechanical spectroscopy) of the thermo-gelling cellulose derivatives can be largely abolished in the presence of ethylene glycol (40% for methylcellulose, 10% for HPMC) , attributed to solubilisation of the proposed ordered 'bundle' structure at low temperatures removing the enthalpic advantage (DSC) of gel melting. The increased sensitivity of HPMC to modification of the solvent environment is due to the presence of the polar hydroxypropyl substituent causing an inceptive destabilisation of the 'bundle' structure. It is suggested that gelation is driven by the entropic advantage of melting-out 'cages' of structured water surrounding the hydrophobic groups giving rise to intermolecular 'hydrophobic' aggregation.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/4595
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.titleHydrophobicity in polysaccharide gelationen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnamePhDen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Amanda_Kay_Jones_Thesis_1992.pdf
Size:
7.72 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: