Physics informed trajectory inference of a class of nonlinear systems using a closed-loop output error technique

dc.contributor.authorPerrusquía, Adolfo
dc.contributor.authorGuo, Weisi
dc.date.accessioned2023-08-18T10:16:27Z
dc.date.available2023-08-18T10:16:27Z
dc.date.freetoread2023-08-18
dc.date.issued2023-12-01
dc.date.pubOnline2023-08-10
dc.description.abstractTrajectory inference is a hard problem when states measurements are noisy and if there is no high-fidelity model available for estimation; this may arise into high-variance and biased estimates results. This article proposes a physics informed trajectory inference of a class of nonlinear systems. The approach combines the advantages of state and parameter estimation algorithms to infer the trajectory that follows the nonlinear system using online noisy state measurements. The algorithm is composed of a parallel estimated model constructed in terms of a low-pass filter parameterization. The estimated model defines a physics informed model that infers the trajectory of the real nonlinear system with noise attenuation capabilities. The parameters of the estimated model are updated by a closed-loop output error identification algorithm which uses the estimated states instead of the noisy measurements to avoid biased estimation. Stability and convergence of the proposed technique is assessed using Lyapunov stability theory. Simulations studies are carried out under different scenarios to verify the effectiveness of the proposed inference algorithm.en_UK
dc.description.journalNameIEEE Transactions on Systems, Man, and Cybernetics: Systems
dc.identifier.citationPerrusquia A, Guo W. (2023) Physics informed trajectory inference of a class of nonlinear systems using a closed-loop output error technique. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 53, Issue 12, December 2023, pp. 7583-7594en_UK
dc.identifier.issn2168-2216
dc.identifier.issueNo12
dc.identifier.urihttps://doi.org/10.1109/TSMC.2023.3298217
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/20116
dc.identifier.volumeNo53
dc.language.isoenen_UK
dc.publisherIEEEen_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectInferenceen_UK
dc.subjectnonlinear systemsen_UK
dc.subjectoutput erroren_UK
dc.subjectphysics informeden_UK
dc.subjectstate parameterizationen_UK
dc.titlePhysics informed trajectory inference of a class of nonlinear systems using a closed-loop output error techniqueen_UK
dc.typeArticleen_UK
dcterms.dateAccepted2023-07-19

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Physics_informed_trajectory_inference-2023.pdf
Size:
2.36 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: