Aluminide-based coatings for turbine blade internal cooling passages
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The development of aero-gas turbines is moving towards more efficient engines with higher pressure ratios and increased Turbine Entry Temperatures. This leads to increases in overall turbine blades temperatures which has resulted in the widescale development of turbine blades with film cooling and Thermal Barrier Coatings (TBCs) which reduce the metal temperature of the blade. The air used for film cooling is directed around the blade by internal passages within the blade, current engines are experiencing hot corrosion in areas of these internal passages, even with internal aluminide coatings. The trend for more efficient engines means that corrosion of the internal passages will become more common, coupled with the inability to inspect the internal passages of turbine blades in service, results in a requirement for an improved coating for the internal passages of turbine blades. The aim of this study was to develop a coating which provides improved corrosion and oxidation performance over a standard vapour aluminide on single crystal CMSX-4 turbine blades material. The coating needs to be compatible with the Rolls- Royce bond coat and the Rolls-Royce manufacturing strategy. The study investigated a number of additions which could be used to improve the performance of an aluminide coating. Silicon was selected as the optimum addition on the basis of performance and ease of deposition. The work then assessed the influence of various production parameters on the formation of a silicon-aluminide coating. It was possible to control the level of silicon deposited in the coating. Performance testing, using cyclic oxidation and salt recoat hot corrosion tests, of various silicon aluminides developed in this programme demonstrated at least a doubling in life compared with vapour aluminide coatings.