Functional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to rivers

dc.contributor.authorMagliozzi, Chiara
dc.contributor.authorUsseglio-Polatera, Philippe
dc.contributor.authorMeyer, Albin
dc.contributor.authorGrabowski, Robert C.
dc.date.accessioned2019-06-18T15:45:18Z
dc.date.available2019-06-18T15:45:18Z
dc.date.issued2019-06-04
dc.description.abstract1.Large wood (LW) is a natural element of river environments and an integral component of many river restoration schemes to promote biodiversity. It is an important habitat in itself, but it also induces a wide range of hydraulic, hydrological, geomorphological, and chemical conditions that influence the ecological community. However, the effects of hydro‐geomorphological processes induced by LW on local benthic and hyporheic invertebrates have not been well characterized. 2.A functional approach was applied to invertebrate data collected in a field survey at sites with LW and without LW (control), to investigate the response of hyporheic and benthic invertebrates’ trait profiles in response to local LW‐induced processes. 3.We hypothesized LW sites to be associated with different trait modalities than control sites in relation to wood‐induced processes and conditions (i.e. hyporheic exchange flow, oxygen availability, temporal stability, organic matter, denitrification, hydraulic conductivity). Multivariate analyses and Partial Least Squares (PLS) Path Modelling were used to detect the differences in trait profiles between LW and control sites and to study the variation of traits as a function of hydrological, sedimentological, physical and chemical variables. 4.Biological (i.e. aquatic stages, reproduction), physiological (i.e. dispersal, feeding habits) and behavioural (i.e. substrate preferences) trait utilization by the hyporheic meiofauna differed between LW and control sites. At LW sites, the hyporheic meiofaunal assemblage was significantly associated with aquatic active dispersal, aquatic eggs and hard substrate preferences. This trait category selection was linked to changes in physical‐sedimentological processes at LW sites when compared to control sites. Macrofaunal benthic and hyporheic functional traits did not differ significasignificantly between wood and control sites, suggesting similar functioning of these assemblages at the surface‐subsurface interface. 5.This study found that LW affects invertebrate traits by altering fluvial processes to produce, locally, a mosaic of habitats. Hyporheic meiofauna trait responses to LW‐processes have suggested (i) the crucial role of LW in supporting river benthic zone functioning, and thus (ii) a possible benefit to river restoration by enhancing functional interactions among different ecological niches.en_UK
dc.identifier.citationMagliozzi C, Usseglio-Polatera P, Meyer A, Grabowski RC. (2019) Functional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to rivers, Functional Ecology, Volume 33, Issue 9, September 2019, pp. 1758-1770en_UK
dc.identifier.cris23485897
dc.identifier.issn0269-8463
dc.identifier.urihttps://doi.org/10.1111/1365-2435.13381
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/14250
dc.language.isoenen_UK
dc.publisherWileyen_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectlarge wooden_UK
dc.subjectriver ecologyen_UK
dc.subjectmacrofaunaen_UK
dc.subjectmeiofaunaen_UK
dc.subjecthyporheic zoneen_UK
dc.subjectriver restorationen_UK
dc.titleFunctional traits of hyporheic and benthic invertebrates reveal importance of wood-driven geomorphological processes to riversen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Functional _traits_of_hyporheic_and_benthic_invertebrates-2019.pdf
Size:
797.03 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: