The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment

Date

2016-10-24

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

IWA Publishing

Department

Type

Article

ISSN

0043-1354

Format

Free to read from

Citation

Ncube P, Pidou M, Stephenson T, Jefferson B, Jarvis P, The effect of high hydraulic loading rate on the removal efficiency of a quadruple media filter for tertiary wastewater treatment, Water Research, Volume 107, 15 December 2016, Pages 102–112.

Abstract

It is well known that filtration removal efficiency falls with an increase in flow rate; however, there is limited supporting experimental data on how removal efficiency changes for filters with multiple layers of media and for wastewater filtration, a practice that is becoming more common. Furthermore, information is not available on the characteristics of particles that are removed at different flow rates. Here, a quadruple media filter was operated at hydraulic loading rates (HLRs) between 5 and 60 mh−1 with subsequent measurement of total suspended solids, turbidity and particle size distribution (PSD). Samples were collected from the filter influent, effluent and also from between media layers. Pressure changes across the filter layers were also measured. The solids removal efficiency of the filter varied inversely with the increase in filtration rate. However, the multiple media layers reduced the negative impact of increased HLR in comparison to a single media filter. High filtration rates were shown to transport solids, such that particle retention and headloss development was distributed across the entire depth of the multi-media filter. There was also a progressive decrease in the suspension particle size leaving each of the filter layers. The particle hydrodynamic force simulation was consistent with the changes in measured PSD through the filter layers.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Attribution-Non-Commercial-No Derivatives 3.0 Unported (CC BY-NC-ND 3.0). You are free to: Share — copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No Derivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements

Funder/s