Material strength at high pressure
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Over the past 30 years, advancements in the focusing schemes, beam quality, and X-ray brilliance at synchrotron light sources have enabled the reduction of X-ray beam dimensions from tens of micrometers into the sub-micrometer domain. These developments have enabled spatial mapping of the stress state at multi-megabar pressures in the diamond anvil cell. This work presents angle-dispersive X-ray diffraction results collected on beamline P02.2 at the Petra-III synchrotron using a beam size (FWHM) of 0.85 x 0.85 microns on an Ir sample. Variations in the local stress state in the sample were analysed through two approaches based on X-ray diffraction peak shifting and broadening. The results of the two methods are compared and highlight the effectiveness of Bi as a pressure transmitting medium, even at multi-megabar pressures. We look to apply these techniques to future experiments into obtaining more precise investigations of phase transitions and material strength at extreme pressure.
Description
Software Description
Software Language
Github
Keywords
DOI
Rights
Relationships
Relationships
Resources
Funder/s
AWE Scholarship