Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures

dc.contributor.authorShittu, Abdulhakim Adeoye
dc.contributor.authorMehmanparast, Ali
dc.contributor.authorWang, Lin
dc.contributor.authorSalonitis, Konstantinos
dc.contributor.authorKolios, Athanasios
dc.date.accessioned2020-01-28T16:45:55Z
dc.date.available2020-01-28T16:45:55Z
dc.date.issued2020-01-26
dc.description.abstractOffshore wind turbines (OWTs) are deployed in harsh environments often characterized by highly stochastic loads and resistance properties, thus necessitating the need for structural reliability assessment (SRA) to account for such uncertainties systematically. In this work, the SRA of an OWT jacket-type support structure is conducted, applying two stochastic methods to predict the safety level of the structure considering various design constraints. The first method refers to a commercial finite element analysis (FEA) package (DesignXplorer© from ANSYS) which employs direct simulations and the six sigma analysis function applying Latin hypercube sampling (LHS) to predict the probability of failure. The second method develops a non-intrusive formulation which maps the response of the structure through a finite number of simulations to develop a response surface, and then employs first-order reliability methods (FORM) to evaluate the reliability index and, subsequently, the probability of failure. In this analysis, five design constraints were considered: stress, fatigue, deformation, buckling, and vibration. The two methods were applied to a baseline 10-MW OWT jacket-type support structure to identify critical components. The results revealed that, for the inherent stochastic conditions, the structural components can safely withstand such conditions, as the reliability index values were found acceptable when compared with allowable values from design standards. The reliability assessment results revealed that the fatigue performance is the design-driving criterion for structural components of OWT support structures. While there was good agreement in the safety index values predicted by both methods, a limitation of the direct simulation method is in its requirement for a prohibitively large number of simulations to estimate the very low probabilities of failure in the deformation and buckling constraint cases. This limitation can be overcome through the non-intrusive formulation presented in this work.en_UK
dc.identifier.citationShittu AA, Mehmanparast A, Wang L, et al., (2020) Comparative study of structural reliability assessment methods for offshore wind turbine jacket support structures. Applied Sciences, Volume 10, Issue 3, January 2020, Article number 860en_UK
dc.identifier.issn2076-3417
dc.identifier.urihttps://doi.org/10.3390/app10030860
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/15033
dc.language.isoenen_UK
dc.publisherMDPIen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectstochastic modelingen_UK
dc.subjectreliability indexen_UK
dc.subjectnon-intrusive formulationsen_UK
dc.subjectstructural reliability analysisen_UK
dc.subjectoffshore wind structuresen_UK
dc.titleComparative study of structural reliability assessment methods for offshore wind turbine jacket support structuresen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
offshore_wind_turbine_jacket_support_structures-2020.pdf
Size:
1.33 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: