Trajectory optimization and control of a free-floating two arms humanoid robot
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
An optimization algorithm for planning the motion of a humanoid robot during extravehicular activities is presented in this paper. The algorithm can schedule and plan the movements of the two robotic arms to move the humanoid robot by using the handrails present outside the international space station. The optimization algorithm considers the eventual constraints imposed by the topology of the handrails and calculates the sequence of grasping and non-grasping phases needed to push and pull the robot along the handrails. A low-level controller is also developed and used to track the planned arms and end-effectors trajectories. Numerical simulations assess the applicability of the proposed strategy in three different typical operations that potentially can be performed in an extravehicular activity scenario.