Advancing fault diagnosis in aircraft landing gear: an innovative two-tier machine learning approach with intelligent sensor data management
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Revolutionizing aircraft safety, this study unveils a pioneering two-tier machine learning model specifically designed for advanced fault diagnosis in aircraft landing gear systems. Addressing the critical gap in traditional diagnostic methods, our approach deftly navigates the challenges of sensor data anomalies, ensuring robust and accurate real-time health assessments. This innovation not only promises to enhance the reliability and safety of aviation but also sets a new benchmark in the application of intelligent machine-learning solutions in high-stakes environments. Our method is adept at identifying and compensating for data anomalies caused by faulty or uncalibrated sensors, ensuring uninterrupted health assessment. The model employs a simulation-based dataset reflecting complex hydraulic failures to train robust machine learning classifiers for fault detection. The primary tier focuses on fault classification, whereas the secondary tier corrects sensor data irregularities, leveraging redundant sensor inputs to bolster diagnostic precision. Such integration markedly improves classification accuracy, with empirical evidence showing an increase from 95.88% to 98.76% post-imputation. Our findings also underscore the importance of specific sensors—particularly temperature and pump speed—in evaluating the health of landing gear, advocating for their prioritized usage in monitoring systems. This approach promises to revolutionize maintenance protocols, reduce operational costs, and significantly enhance the safety measures within the aviation industry, promoting a more resilient and data-informed safety infrastructure.