Estimating measurement uncertainty in the medical laboratory

Date published

2016-09

Free to read from

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

Type

Thesis or dissertation

ISSN

Format

Citation

Abstract

Medical Laboratories Accreditation is covered by ISO 15189:2012 - Medical Laboratories — Requirements for Quality and Competence. In Portugal, accreditation processes are held under the auspices of the Portuguese Accreditation Institute (IPAC), which applies the Portuguese edition (NP EN ISO 15189:2014). Accordingly, Medical Laboratories accreditation processes now require the estimate of measurement uncertainty (MU) associated to the results. The Guide to the Expression of Uncertainty in Measurement (GUM) describes the calculation of MU, not contemplating the specific aspects of medical laboratory testing. Several models have been advocated, yet without a final consensus. Given the lack of studies on MU in Portugal, especially on its application in the medical laboratory, it is the objective of this thesis to reach to a model that fulfils the IPAC’s accreditation regulations, in regards to this specific requirement. The study was based on the implementation of two formulae (MU-A and MU-B), using the Quality Management System (QMS) data of an ISO 15189 Accredited Laboratory. Including the laboratory’s two Cobas® 6000–c501 (Roche®) analysers (C1 and C2) the work focused three analytes: creatinine, glucose and total cholesterol. The MU-B model formula, combining the standard uncertainties of the method’s imprecision, of the calibrator’s assigned value and from the pre-analytical variation, was considered the one best fitting to the laboratory's objectives and to the study's purposes, representing well the dispersion of values reasonably attributable to the measurand final result. Expanded Uncertainties were: Creatinine - C1 = 9,60%; C2 = 5,80%; Glucose - C1 = 8,32%; C2 = 8,34%; Cholesterol - C1 = 4,00%; C2 = 3,54 %. ...[cont.].

Description

Software Description

Software Language

Github

Keywords

Accreditation, ISO15189 Standard, Technical Requirement, Top-Down, Calibration Hierarchy, Traceability, Trueness, Bias, Intermediate Precision, Imprecision, Pre-analytical Phase, Variation

DOI

Rights

© Cranfield University, 2016. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.

Relationships

Relationships

Supplements

Funder/s