A model for using self-organized agents to visually map environmental profiles

Date

2014-06-09

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

1476-945X

Format

Free to read from

Citation

John Oyekan, Dongbing Gu, Huosheng Hu, A model for using self-organized agents to visually map environmental profiles, Ecological Complexity, Volume 19, September 2014, Pages 68-79

Abstract

In this work, we investigate the possibility of using inspiration from the self-organizing property of organisms in nature for providing visual representation of an invisible pollutant profile. We present a novel mathematical model of the bacterium and use it to find pollutants in the environment. This model has the capability of exploring the environment to search for sparsely distributed pollutants or food sources and then subsequently exploiting them upon discovery. We also combine the bacterium model in a bacterium–flock algorithm for the purposes of preventing collisions between robots or organisms in addition to providing coverage to a pollutant. By adjusting the velocity of individuals, we show that we are able to control the coverage provided by the population as a whole. Furthermore, we compare the bacterium–flock algorithm with a novel gradient-ascent-flocking algorithm and the well established Voronoi partition algorithm. Results show that bacterium–flock algorithm and the Voronoi partition algorithm are capable of adapting the distribution of the individuals of a population based upon the underlying pollutant profile while the gradient-ascent-flocking algorithm is not. This shows that the bacterium–flock and the Voronoi partition algorithms can potentially be used to track a spatiotemporal function. On the other hand, the gradient-ascent-flock algorithm has a faster convergence time in some cases with the Voronoi partition algorithm having the slowest convergence time overall.

Description

Software Description

Software Language

Github

Keywords

Self-organization, Natural templates, Mathematical modelling, Flocking, Robotics

DOI

Rights

Attribution-Non-Commercial-No Derivatives 3.0 Unported (CC BY-NC-ND 3.0). You are free to: Share — copy and redistribute the material in any medium or format. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. Information: Non-Commercial — You may not use the material for commercial purposes. No Derivatives — If you remix, transform, or build upon the material, you may not distribute the modified material. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Relationships

Relationships

Supplements

Funder/s