A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics

Date published

2022-12-23

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0306-2619

Format

Citation

Zhao J, Li Y-G, Sampath S. (2023) A hierarchical structure built on physical and data-based information for intelligent aero-engine gas path diagnostics, Applied Energy, Volume 332, February 2023, Article number 120520

Abstract

Future trends in engine health management (EHM) systems are information fusion, advanced analytical methods, and the concept of the Intelligent Engines. Machine Learning (ML)-based aero-engine gas path diagnostic methods are promising under the motivation of these trends. However, previous ML-based diagnostic structures are rarely applied in actual engineering practice because they are purely mathematical and lack physical insight or are limited by the error accumulation problem. Developing an accurate, flexible and interpretable intelligent diagnostic method has always posed a challenge, especially when physical knowledge is also available for more diagnostic information. Instead of modifying and applying existing ML methods for classification or regression, this study proposes a novel hierarchical diagnostic method to get insight into the physical systems, build hierarchies automatically, and recommend the classification structures. The proposed hierarchical diagnostic method is evaluated against a NASA model high-bypass two-spool turbofan engine. NASA's blind test case results show that Kappa Coefficient of the proposed hierarchical diagnostic method is 0.693 and is at least 0.008 higher than the other diagnostic methods in the open literature. It has been proved that the proposed method can quantify the dependence relationships between the fault classes for enhanced diagnostic information, recommend the best diagnostic structure for reduced complexity, and solve the error accumulation problem for improved diagnostic accuracy. The proposed method could support intelligent condition monitoring systems by effectively exploiting physical and data-based information for improved model interpretability, model flexibility, diagnostic visibility, diagnostic accuracy, and diagnostic reliability.

Description

Software Description

Software Language

Github

Keywords

Aero engines, Intelligent condition monitoring, Gas path diagnostics, Machine Learning, Hierarchical diagnostic method

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s