Advanced flow technologies for the controlled & continuous manufacture of nanoscale materials

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

SATM

Type

Thesis or dissertation

ISSN

Format

Free to read from

Citation

Abstract

Batch processes have been successfully used in the process industry over two centuries. However, changing customer demands and discovery of novel products have led the scientists and engineers to develop new manufacturing methods for the process industry. High-value products such as nanomaterials, smart and functional materials require precise process control for the entire product. Controlling of particle size and shape becomes more difficult in the large scale batch processes. Therefore, over the past few decades, there has been an increasing interest in the flow processing techniques due to their inherent benefits, such as better heat and mass transfer and small control volumes. Continuous Oscillatory Baffled Reactor (COBR) is a novel type of flow reactor. COBR combines oscillatory motion and periodically placed baffled flow channels to generate plug flow conditions, providing better mixing control similar to microreactors. Plug flow conditions can be achieved with the combination of optimum net flow, oscillatory amplitude and frequency using COBRs. With this new reactor and mixing concept, high-value products can be manufactured more efficiently using uniform mixing conditions and better temperature control. This will decrease the reaction time and production cost of novel products, use less energy, and increase time-to-market of novel products. The aim of this research is to develop a scalable and continuous manufacturing platform using continuous oscillatory baffled reactors to produce high-value products in low cost. The focus of this study includes developing modular oscillatory baffled reactors, characterisation of modular oscillatory baffled reactors using experimental methods, developing scale-up methodology from laboratory scale to industrial production size and demonstration of nanomaterial synthesis using modular oscillatory flow reactor...[cont.]

Description

Software Description

Software Language

Github

Keywords

Continuous Manufacturing, Modular Oscillatory Baffled Reactor, Nanotechnology, Process Scale-up, Advanced Nanomaterials, Product and Process Formulation

DOI

Rights

© Cranfield University, 2019. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.

Relationships

Relationships

Supplements

Funder/s