Molecular dynamics simulation of AFM tip-based hot scratching of nanocrystalline GaAs

dc.contributor.authorFan, Pengfei
dc.contributor.authorGoel, Saurav
dc.contributor.authorLuo, Xichun
dc.contributor.authorYan, Yongda
dc.contributor.authorGeng, Yanquan
dc.contributor.authorHe, Yang
dc.contributor.authorWang, Yuzhang
dc.date.accessioned2021-04-13T11:23:09Z
dc.date.available2021-04-13T11:23:09Z
dc.date.issued2021-04-08
dc.description.abstractGaAs is a hard, brittle material and its cutting at room-temperature is rather difficult, so the work explored whether hot conditions improve its cutting performance or not. Atomic force microscope (AFM) tip-based hot machining of the (0 1 0) oriented single crystal GaAs was simulated using molecular dynamics (MD). Three representative temperatures 600 K, 900 K and 1200 K (below the melting temperature of ~1511 K) were used to cut GaAs to benchmark against the cutting performance at 300 K using indicators such as the cutting forces, kinetic coefficient of friction, cutting temperature, shear plane angle, sub-surface damage depth, shear strain in the cutting zone, and stress on the diamond tip. Hotter conditions resulted in the reduction of cutting forces by 25% however, the kinetic coefficient of friction went up by about 8%. While material removal rate was found to increase with the increase of the substrate temperature, it was accompanied by an increase of the sub-surface damage in the substrate. Simulations at 300 K showed four major types of dislocations with Burgers vector 1/2<110>, 1/6<112>, <0-11> and 1/2<1-12> underneath the cutting zone and these were found to cause ductile response in zinc-blende GaAs. Lastly, a phenomenon of chip densification was found to occur during hot cutting which referred to the fact that the amorphous cutting chips obtained from cutting at low temperature will have lower density than the chips obtained from cutting at higher temperatures.en_UK
dc.identifier.citationFan P, Goel S, Luo X, et al., (2021) Molecular dynamics simulation of AFM tip-based hot scratching of nanocrystalline GaAs. Materials Science in Semiconductor Processing, Volume 130, August 2021, Article number 105832en_UK
dc.identifier.issn1369-8001
dc.identifier.urihttps://doi.org/10.1016/j.mssp.2021.105832
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/16558
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectDislocation nucleationen_UK
dc.subjectSingle crystal gallium arsenideen_UK
dc.subjectMolecular dynamic (MD) simulationen_UK
dc.subjectAFM Tip-based hot machiningen_UK
dc.titleMolecular dynamics simulation of AFM tip-based hot scratching of nanocrystalline GaAsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Molecular_dynamics_simulation_AFM_tip-based_hot_scratching_of_nanocrystalline-2021.pdf
Size:
1.06 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: