Normalised diagnostic contribution index (NDCI) integration to multi objective sensor optimisation framework (MOSOF)—An environmental control system case
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In modern aerospace systems, effective sensor optimisation is essential for ensuring reliable diagnostics, efficient resource allocation, and proactive maintenance. This paper presents Normalised Diagnostic Contribution Index (NDCI) integration into the Multi-Objective Sensor Optimisation Framework (MOSOF) to address application-specific performance nuances. Building on previous work, the proposed approach leverages a multi-objective genetic algorithm to optimise key criteria, including performance, cost, reliability management, and compatibility. NDCI is derived from simulation data obtained via the Boeing 737-800 Environmental Control System (ECS) using the SESAC platform, where degradation level readings across four fault modes are analysed. The framework evaluates sensor performance from the perspectives of Original Equipment Manufacturers (OEM), Airlines, and Maintenance Repair Overhaul (MRO) organisations. Validation against the Minimum Redundancy Maximum Relevance (mRMR) method highlights the distinct advantage of NDCI by identifying an optimal set of three sensors compared to mRMR’s six-sensor solution, and MOSOF’s multi-objective insertion enhances sensor deployment for different stakeholders. This integration not only expands the feasible solution space for sensor-pair configurations but also emphasises diagnostic value over redundancy. Overall, the enhanced NDCI-MOSOF offers a scalable, multi-stakeholder approach for next-generation sensor optimisation and predictive maintenance in complex aerospace systems. The results demonstrate significant improvements in diagnostics efficiency for stakeholders.