Cooperative control for a flight array of UAVs and an application in radar jamming
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This paper proposes a flight array system and an integrated approach to cope with its operational issues raised in mission-planning level (i.e., task allocation) and control level (i.e., control allocation). The proposed flight array system consists of multiple ducted-fan UAVs that can assemble with each other to fly together, as well as dissemble themselves to fly individually for accomplishing a given mission. To address the task allocation problem, a game-theoretical framework is developed. This framework enables agents to converge into an agreed task allocation in a decentralised and scalable manner, while guaranteeing a certain level of global optimality. In addition, this paper suggests a cooperative control scheme based on sliding mode control and weighted pseudo-inverse techniques so that the system’s non-linearity and control allocation issue are effectively handled. As a proof-of-concept, a prototype simulation program is developed and validated in a cooperative jamming mission. The numerical simulations manifest the feasibility of effectiveness of the proposed approach.