Tau theory-based flare control in autonomous helicopter autorotation
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
A novel trajectory generation and control architecture for fully autonomous autorotative flare that combines rapid path generation with model-based control is proposed. The trajectory generation component uses optical Tau theory to compute flare trajectories for both longitudinal and vertical speed. These flare trajectories are tracked using a nonlinear dynamic inversion (NDI) control law. One convenient feature of NDI is that it inverts the plant model in its feedback linearization loop, which eliminates the need for gain scheduling. However, the plant model used for feedback linearization still needs to be scheduled with the flight condition. This key aspect is leveraged to derive a control law that is scheduled with linearized models of the rotorcraft flight dynamics obtained in steady-state autorotation, while relying on a single set of gains. Computer simulations are used to demonstrate that the NDI control law is able to successfully execute autorotative flare in the UH-60 aircraft. Autonomous flare trajectories are compared to piloted simulation data to assess similarities and discrepancies between piloted and automatic control approaches. Trade studies examine which combinations of downrange distances and altitudes at flare initiation result in successful autorotative landings.