An improved Thevenin model of lithium-ion battery with high accuracy for electric vehicles
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
This paper proposes an improved Thevenin model of the Lithium-ion battery taking into account temperature influence on the calculation accuracy of the open circuit voltage of a battery. The calculation accuracy of the terminal voltage of a battery is improved without increasing the order of the model. Firstly, the model was proposed based on Thevenin model and the relationship between the open-circuit voltage and the state of charge. Then, based on the experimental results of the open-circuit voltage test and hybrid power pulse characteristic test, the parameters of the battery model were identified by polynomial fitting and genetic algorithm, respectively. Furthermore, the temperature effects were considered in both the open-circuit voltage and hybrid power pulse characteristic tests. Finally, the proposed model was tested and verified by experiments under the Dynamic Stress Test condition and the Urban Dynamometer Driving Schedule at different temperatures. The accuracy of the proposed model is high and the parameter identification error is less than 1%.