Stochastic heat transfer simulation of the cure of advanced composites
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
A stochastic cure simulation approach is developed to investigate the variability of the cure process during resin infusion related to thermal effects. Boundary condition uncertainty is quantified experimentally and appropriate stochastic processes are developed to represent the variability in tool/air temperature and surface heat transfer coefficient. The heat transfer coefficient presents a variation across different experiments of 12.3%, whilst the tool/air temperatures present a standard deviation over 1℃. The boundary condition variability is combined with an existing model of cure kinetics uncertainty and the full stochastic problem is addressed by coupling a cure model with Monte Carlo and the Probabilistic Collocation Method and applied to the case of thin carbon epoxy laminates. The overall variability in cure time reaches a coefficient of variation of about 22%, which is dominated by uncertainty in surface heat transfer and tool temperature; with ambient temperature and kinetics contributing variability in the order of 1%.