Delayed detached-eddy simulation and particle image velocimetry investigation of S-Duct flow distortion
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
The dynamic flow distortion generated within convoluted aeroengine intakes can affect the performance and operability of the engine. There is a need for a better understanding of the main flow mechanisms that promote flow distortion at the exit of S-shaped intakes. This paper presents a detailed analysis of the main coherent structures in an S-duct flowfield based on a delayed detached-eddy simulation. The capability of this numerical approach to capture the characteristics of the highly unsteady flowfield is demonstrated against high-resolution, synchronous stereoscopic particle image velocimetry measurements at the aerodynamic interface plane. The flowfield mechanisms responsible for the main perturbations at the duct outlet are identified. Clockwise and counterclockwise streamwise vortices are alternately generated around the separation region at a frequency of St=0.53 St=0.53 , which promote the swirl switching at the duct outlet. Spanwise vortices are also shed from the separation region at a frequency of St=1.06 St=1.06 and convect downstream along the separated centerline shear layer. This results in a vertical modulation of the main loss region and a fluctuation of the velocity gradient between the high- and low-velocity flow at the aerodynamic interface plane.