An integrated framework for multi-state driver monitoring using heterogeneous loss and attention-based feature decoupling

Date published

2022-09-29

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI

Department

Type

Article

ISSN

1424-8220

Format

Citation

Hu Z, Zhang Y, Xing Y, et al., (2022) An integrated framework for multi-state driver monitoring using heterogeneous loss and attention-based feature decoupling, Sensors, Volume 22, Issue 19, September 2022, Article number 7415

Abstract

Multi-state driver monitoring is a key technique in building human-centric intelligent driving systems. This paper presents an integrated visual-based multi-state driver monitoring framework that incorporates head rotation, gaze, blinking, and yawning. To solve the challenge of head pose and gaze estimation, this paper proposes a unified network architecture that tackles these estimations as soft classification tasks. A feature decoupling module was developed to decouple the extracted features from different axis domains. Furthermore, a cascade cross-entropy was designed to restrict large deviations during the training phase, which was combined with the other features to form a heterogeneous loss function. In addition, gaze consistency was used to optimize its estimation, which also informed the model architecture design of the gaze estimation task. Finally, the proposed method was verified on several widely used benchmark datasets. Comprehensive experiments were conducted to evaluate the proposed method and the experimental results showed that the proposed method could achieve a state-of-the-art performance compared to other methods.

Description

Software Description

Software Language

Github

Keywords

driver state, feature decoupling, cascade cross-entropy, gaze consistency

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s