Optimal energy management for formula-E cars with regulatory limits and thermal constraints
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In this paper, novel solutions are proposed for energy and thermal management in Formula-E cars using optimal control theory. Optimal control techniques are used to optimize net energy consumption (accounting for loss-reductions from energy recovery from regenerative braking) to achieve minimal lap time which is a crucial element in developing a competitive race strategy in Formula E races. A thermal battery model is used to impose thermal constraints on the optimal energy management strategy in order to realistically capture working constraints during a race. The effects of energy and thermal constraints on the proposed strategy are then demonstrated and two different pedal lifting techniques were introduced. Both the current second generation and a concept third generation type of formula-E cars are studied and compared. While third generation is significantly more efficient with 10% to 30% less energy consumption, it potentially faces more critical thermal issues with more than 60% more heat generation.