Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau

dc.contributor.authorFalaschi, Daniel
dc.contributor.authorBhattacharya, Atanu
dc.contributor.authorGuillet, Gregoire
dc.contributor.authorHuang, Lei
dc.contributor.authorKing, Owen
dc.contributor.authorMukherjee, Kriti
dc.contributor.authorRastner, Philipp
dc.contributor.authorYao, Tandong
dc.contributor.authorBolch, Tobias
dc.date.accessioned2024-02-28T15:54:59Z
dc.date.available2024-02-28T15:54:59Z
dc.date.issued2023-12-20
dc.description.abstractGlaciers are crucial sources of freshwater in particular for the arid lowlands surrounding High Mountain Asia. To better constrain glacio-hydrological models, annual, or even better, seasonal information about glacier mass changes is highly beneficial. In this study, we evaluate the suitability of very-high-resolution Pléiades digital elevation models (DEMs) to measure glacier mass balance at annual and seasonal scales in two regions of High Mountain Asia (Muztagh Ata in Eastern Pamirs and parts of western Nyainqêntanglha, south-central Tibetan Plateau), where recent estimates have shown contrasting glacier behaviour. The average annual mass balance in Muztagh Ata between 2019 and 2022 was −0.07 ± 0.20 m w.e. a−1, suggesting the continuation of a recent phase of slight mass loss following a prolonged period of balanced mass budgets previously observed. The mean annual mass balance in western Nyainqêntanglha was highly negative for the same period (−0.60 ± 0.15 m w.e. a−1), suggesting increased mass loss rates compared to the approximately previous 5 decades. The 2022 winter (+0.13 ± 0.24 m w.e.) and summer (−0.35 ± 0.15 m w.e.) mass budgets in Muztagh Ata and western Nyainqêntanglha (−0.03 ± 0.27 m w.e. in winter; −0.63 ± 0.07 m w.e. in summer) suggest winter- and summer-accumulation-type regimes, respectively. We support our findings by implementing the Sentinel-1-based Glacier Index to identify the firn and wet-snow areas on glaciers and characterize the accumulation type. The good match between the geodetic and Glacier Index results supports the potential of very-high-resolution Pléiades data to monitor mass balance at short timescales and improves our understanding of glacier accumulation regimes across High Mountain Asia.en_UK
dc.identifier.citationFalaschi D, Bhattacharya A, Guillet G, et al., (2023) Annual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateau. The Cryosphere, Volume 17, Issue 12, 2023, pp. 5435-5458en_UK
dc.identifier.eissn1994-0424
dc.identifier.urihttps://doi.org/10.5194/tc-17-5435-2023
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/20900
dc.language.isoenen_UK
dc.publisherCopernicusen_UK
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleAnnual to seasonal glacier mass balance in High Mountain Asia derived from Pléiades stereo images: examples from the Pamir and the Tibetan Plateauen_UK
dc.typeArticleen_UK
dcterms.dateAccepted2023-11-21

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Annual_to_seasonal_glacier_mass_balance-2023.pdf
Size:
11.58 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: