Removal of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) by coagulation: influence of coagulant and dosing conditions
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose significant risks to the environment and human health. Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are two of the most frequently detected PFAS in the environment. In most surface water drinking water treatment works (WTW), coagulation is the first processes exposed to a range of contaminants, including PFAS. While not designed to be a process for removal of micropollutants, it is important to understand the fate of PFAS in coagulation processes, intended or otherwise, to determine whether water treatment sludge can be a significant sink for this group of micropollutants. This work advances understanding of PFAS removal in coagulation processes by comparing the removal of PFOA and PFOS by four metal coagulants (Zr, Zn, Fe, and Al) from real water matrices. The coagulant performance followed the order Al > Fe > Zr > Zn. Al was taken forward for further evaluation, with significant removal of PFAS (>15 % for PFOA and > 30 % for PFOS) being observed when the pH<5.5 and the dose was > 5 mg Al·L-1. The adsorption of PFOA and PFOS onto flocs through hydrophobic interaction was the primary removal route. The impacts of background matrix on the mechanisms of coagulation for PFAS were explored using five organic compounds. Macromolecular organic compounds contributed to an increase in removal due to the sorption of PFAS and subsequent removal of the organic-PFAS aggregate during coagulation. Low molecular weight organic matter inhibited the removal of PFAS due to the ineffective removal of these compounds during coagulation.
Description
Software Description
Software Language
Github
Keywords
DOI
Rights
Relationships
Relationships
Resources
Funder/s
The authors would like to express their gratitude for the financial support of the work from the China Scholarship Council.