Optimised robot calibration using a vision-based measurement system with a single camera

dc.contributor.advisorMcMaster, R.
dc.contributor.authorMotta, J. M. S. T.
dc.date.accessioned2016-12-06T16:26:41Z
dc.date.available2016-12-06T16:26:41Z
dc.date.issued1999-03
dc.description.abstractRobot calibration plays an increasingly important role in robot production as well as in robot operation and integration within computer integrated manufacturing or assembly systems. The production, implementation and operation of robots are issues where robot calibration results can lead to significant accuracy improvement and/or cost- savings. The thesis describes techniques for modelling, optimising and performing robot calibration processes using a 3-D vision-based measurement system for off-line programming. The identification of the nonrlnal kinematic model is optimised using numerical methods to eliminate redundant geometric parameters in the model. Calibration based on the optimised model shows improvement in robot accuracy when compared to the non-optimised model. The basics of the measurement system consist of a single CCD camera mounted on the robot tool flange, image processing software, and algorithms specially developed to measure the end-effector pose relative to a world coordinate system. Geometric lens distortions are included in the analytical technique. The target consists of two identical clusters of calibration points printed on photographic paper, and mounted on the sides of a 90-degree angle plate. Experimental work was performed to assess the measurement system accuracy at different distances from the camera to the target. An average accuracy from O.2mm to O.4mm was obtained at distances between 6S0mm to 9S0mm. Tests were also performed on three different robots to assess the improvement in the overall robot accuracy. The robots tested were: PUMA-SOO, IRB-2400 and IRB-6400. The errors before calibration for the three robots were approximately in a range from Smm to lSmm if measured in a large volume. The best average accuracy obtained after the calibration of the three robots was O.3Smm, O.60mm and O.4Smm respectively. This study shows that many different variables are involved in the calibration process. The influence of these variables was studied both experimentally and by means of simulation.en_UK
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/11097
dc.language.isoenen_UK
dc.publisherCranfield Universityen_UK
dc.rights© Cranfield University, 1999. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder.en_UK
dc.titleOptimised robot calibration using a vision-based measurement system with a single cameraen_UK
dc.typeThesis or dissertationen_UK
dc.type.qualificationlevelDoctoralen_UK
dc.type.qualificationnameDBAen_UK

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Motta_J_M_S_T_1999.zip
Size:
21.21 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: