Nonlinear acceleration controller for exo-atmospheric and endo-atmospheric interceptors with TVC
Date published
Free to read from
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
In this paper, we propose a nonlinear acceleration controller that can be used for both the endo- and exo-atmospheric interceptors with thrust vector control (TVC) without changing the control configuration. The acceleration perpendicular to the velocity vector is selected as the output to be controlled. Then apply the feedback linearization and the specific form of the desired error dynamics to create the resulting controller which is given by the well-known three loop control structure with parameter-varying control gains. According to changes in altitude operating conditions, the proposed controller can adaptively allocate the aerodynamic force and the thrust to produce the required normal acceleration. Also, we can have confidence in the reliability of the proposed controller because it is given by a similar form of the well-known three loop controller. Numerical simulations are performed to show the validity of the proposed method.