Long-term impacts of repeated cover cropping and cultivation approaches on subsoil physical properties

Date

2023-06-02

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Department

Type

Article

ISSN

0167-1987

Format

Free to read from

Citation

Martlew J, Otten W, Morris N, et al., (2023) Long-term impacts of repeated cover cropping and cultivation approaches on subsoil physical properties. Soil and Tillage Research, Volume 232, August 2023, Article number 105761

Abstract

The intensification of arable agriculture has resulted in an increase in vehicle wheel load and the intensity of field operations, which has increased the risk and incidence of degradation in physical properties of the uncultivated subsoil layer. Biopores generated by the long-term, repeated use of specific cover crops within an arable rotation has been suggested as an approach to improve subsoil physical properties. Therefore, this paper aimed to determine the impact of long-term repeated cover cropping and the interaction of rotation treatments with different cultivation approaches on subsoil physical properties. Data was collected at the NIAB ‘Sustainable Trial for Arable Rotations’ long-term, rotation and cultivation field experiment established in 2006. Rotation treatments comprised a brassica cover crop alternated annually with winter wheat (ALTCC) compared to continuous winter wheat (CWW). Cultivation treatments comprised PLOUGH (250 mm depth), and non-inversion cultivation at 250 mm (DEEP) and 100 mm (SHALLOW) depths. Penetration resistance and volumetric soil moisture were collected at bi-monthly intervals during the 2018/19 growing season. Undisturbed soil cores were collected for laboratory analyses of soil water retention, water stable aggregates, root morphology digital scanning and biomass, and X-ray computed tomography (CT). Results showed that treatment ALTCC combined with SHALLOW, resulted in lower penetration resistance and increased moisture in the subsoil. This increased subsoil moisture persisted later into the season compared to the control. SHALLOW increased subsoil water retention, improved subsoil root morphology and increased subsoil porosity. Benefits from treatment ALTCC were not observed where combined with higher intensity, deeper cultivation. Overall, the combination of treatments ALTCC with SHALLOW, produced significant benefits to subsoil physical properties.

Description

Software Description

Software Language

Github

Keywords

Subsoil, Soil properties, Cover crop, Cultivation

DOI

Rights

Attribution 4.0 International

Relationships

Relationships

Supplements

Funder/s