High-Level Interfaces for the MAD (Matlab Automatic Differentiation) Package.
Date published
Free to read from
Authors
Supervisor/s
Journal Title
Journal ISSN
Volume Title
Publisher
Department
Type
ISSN
Format
Citation
Abstract
Presently, the MAD Automatic Differentiation package for matlab comprises an overloaded implementation of forward mode AD via the fmad class. A key design feature of the fmad class is a separation of the storage and manipulation of directional derivatives into a separate derivvec class. Within the derivvec class, directional derivatives are stored as matrices (2-D arrays) allowing for the use of either full or sparse matrix storage. All manipulation of directional derivatives is performed using high-level matrix operations - thus assuring efficiency. In this paper: we briefly review implementation of the fmad class; we then present our implementation of high-level interfaces allowing users to utilise MAD in conjunction with stiff ODE solvers and numerical optimization routines; we then demonstrate the ease and utility of this approach via several examples; we conclude with a road-map for future developments.