Analysis of phosphorus flux in reed beds at chemically dosed wastewater treatment works

Show simple item record

dc.contributor.advisor Dotro, Gabriela
dc.contributor.advisor Jefferson, Bruce
dc.contributor.author Barak, Jan
dc.date.accessioned 2015-07-29T15:14:57Z
dc.date.available 2015-07-29T15:14:57Z
dc.date.issued 2014-05
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/9328
dc.description.abstract Phosphorus (P) as a macronutrient contributes to eutrophication. In the UK, iron (Fe) and aluminium (Al) salt dosing is a well-established wastewater treatment strategy for its removal. Small works with a population equivalent (p.e.) under 2,000 often employ horizontal subsurface flow constructed wetlands (HSSF CWs) as a means for subsequent tertiary (3°) treatment. Although these significantly improve the final effluent’s quality, P release has, on occasions, been observed. This study attempts to contribute to a better understanding of P flux mechanisms in reed beds and to outline a mitigation strategy countering P release. The literature review identified that, in given circumstances, the P concentration gradient, redox conditions, pH and Fe cycling are key potential factors governing P flux. The field survey revealed that secondary (2°) P effluent concentration negatively correlated with P release from the reed bed. In laboratory scale sludge reactor series, P concentration in wastewater was observed to be buffered by molecular diffusion driven by a concentration gradient in the sludge-wastewater interface. The instantaneous equilibrium point appeared to lie in 0.1 to 0.5 mg/L interval in the first 10 minutes, shifting to 1 mg/L in the next 8 hours and higher in the later stages. In biologically active systems, the shift of the equilibrium point seemed to be dominated by changes in redox potential linked to simultaneous microbial utilisation of oxygen (O2) and nitrate (NO3 - ), eventually leading to a reduction of Fe (III) and sulphate (SO4 2- ), with subsequent P release. The start of Fe (III) reduction coincided with reductive depletion of nitrate-nitrogen (NO3-N) below 1 mg/L. In systems with limited biological activity, P release was linked to disassociation from Fe-P compounds under decreasing pH. In an experiment assessing hydrodynamics, an increase was recorded in Fe and P flux fluctuation due to convection. Based on the findings, maintaining hydraulic residence time (HRT) under 24 hours and reed bed influent in concentrations above 0.5 mg/L total phosphorus (TP) and 15 mg/L NO3-N is proposed as a means to prevent or delay P release. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. en_UK
dc.title Analysis of phosphorus flux in reed beds at chemically dosed wastewater treatment works en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Masters en_UK
dc.type.qualificationname MSc by Research en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics