Techno-economic and environmental assessment of gas turbines utilizing biofuels

Show simple item record

dc.contributor.advisor Di Lorenzo, Giuseppina
dc.contributor.author Onabanjo, Tosin
dc.date.accessioned 2015-06-19T14:24:07Z
dc.date.available 2015-06-19T14:24:07Z
dc.date.issued 2015-03
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/9280
dc.description.abstract The continued global reliance on fossil fuels with impact on resource depletion, human health, atmospheric pollution and environmental degradation has necessitated a global drive to integrate renewable fuels such as biodiesels. Biodiesels are described as “fuels composed of fatty acid methyl or ethyl esters and obtained from vegetable oils or animal fats”. Their use in energy generation could diversify the world’s energy mix, reduce fossil fuel dependence, reduce emissions and energy cost to bring about other economic benefits, especially for developing economies and rural communities with lack of adequate access to modern energy. A techno-economic and environmental life cycle assessment is however required to ensure that these fuels are fit for use in engines and meet any regulatory standard and sustainability criteria. This thesis has evaluated the use of Jatropha- and microalgae-biodiesel for power generation in two industrial gas turbines with open and combined cycle configuration. This was achieved using a techno-economic and environmental life cycle impact assessment framework. Comparative fuel assessments have been carried out between biodiesels and fossil fuels. Furthermore, the concept of microbial fuel degradation was examined in gas turbines. The thesis have identified Jatropha biodiesel as a worthwhile substitute for conventional diesel fuel, because it has close performance and emission characteristics to conventional diesel fuel with added advantage of being renewable. The consequent displacement of conventional diesel fuel with Jatropha biodiesel has significant environmental benefits. For economic viability and sustainability of gas turbine operated power plants, energy producers require a minimum monetary amount to recover the added cost of operating 100% Jatropha biodiesel. Other integration mechanisms are also available for utilizing the fuel in engines without compromising on plant’s economic performance. In worst case scenarios, where there are no government incentives, local conditions such as high life cycle cost of electricity, open opportunities for distributed and independent power generation from renewable fuels like Jatropha-biodiesel. Furthermore, this thesis has identified salient energy conversion processes that occur in gas turbine fuels, especially with biodiesels and developed a bio-mathematical model, Bio-fAEG to simulate these processes in gas turbines. This platform is a first step in quantifiable assessment and could enable a better understanding of microbial initiated processes. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University 2015. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. en_UK
dc.subject Biodiesels en_UK
dc.subject Performance en_UK
dc.subject Emissions en_UK
dc.subject Power Generation en_UK
dc.subject Developing Countries en_UK
dc.title Techno-economic and environmental assessment of gas turbines utilizing biofuels en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics