Studies of PLGA Nanoparticles for Pharmaceutical Applications

Show simple item record

dc.contributor.advisor Ge, Yi
dc.contributor.author Sun, Yanqi
dc.date.accessioned 2015-06-11T13:06:32Z
dc.date.available 2015-06-11T13:06:32Z
dc.date.issued 2014-08
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/9232
dc.description.abstract PLGA have already been successfully applied for controlled drug delivery systems by the pharmaceutical industry due to its biocompatibility, biodegradability and ease of processing. It has recently further been developed and formulated into a form of nanoparticle. The single emulsion evaporation method was used to prepare nanoparticles in this study. By varying different parameters such as the concentration of regents, the type of surfactant and emulsion method, different particle sizes and size distribution of PLGA nanoparticles could be obtained. The stability of PLGA nanoparticles was further investigated by assessing their thermal property over a certain period of time using DSC. The decrease of Tg confirmed the hydration and degradation of PLGA polymers and nanoparticles. The changes of surface morphology showed that the nanoparticles were in spherical shape and maintained smooth surface before the storage, whereas they started to lose their original shapes as well as agglomerate to each other after 2-week storage. These results suggested that there was an erosion and degradation of PLGA nanoparticles during storage. Ibuprofen-loaded PLGA nanoparticles have been successfully prepared by o/w single emulsion evaporation method. During the stability study, a faster degradation rate compared to non-loaded PLGA nanoparticles was exhibited, showing that Ibuprofen increased the degradation rate of PLGA nanoparticles. According to the results of drug releasing study, PLGA nanoparticles exhibiting a slower drug release rate than pure drug which proved that drug-nanoparticule system could effectively increase the stability of drugs. PLGA polymer is a potential material for drug delivery system. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner. en_UK
dc.subject Poly (lactic-co-glycolic acid) en_UK
dc.subject nanoparticles en_UK
dc.subject Ibuprofen en_UK
dc.subject drug loading en_UK
dc.subject characterisation en_UK
dc.subject stability en_UK
dc.subject drug releasing en_UK
dc.title Studies of PLGA Nanoparticles for Pharmaceutical Applications en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Masters en_UK
dc.type.qualificationname MSc by Research en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics