Abstract:
Current
concerns
regarding
climate
change
and
energy
security
have
resulted
in
an
increasing
demand
for
low
carbon
vehicles,
including:
more
efficient
internal
combustion
engine
vehicles,
alternative
fuel
vehicles,
electric
vehicles
and
hybrid
vehicles.
Unlike
traditional
internal
combustion
engine
vehicles
and
electric
vehicles,
hybrid
vehicles
contain
a
minimum
of
two
energy
storage
systems.
These
are
required
to
deliver
power
through
a
complex
powertrain
which
must
combine
these
power
flows
electrically
or
mechanically
(or
both),
before
torque
can
be
delivered
to
the
wheel.
Three
distinct
types
of
hybrid
vehicles
exist,
series
hybrids,
parallel
hybrids
and
compound
hybrids.
Each
type
of
hybrid
presents
a
unique
engineering
challenge.
Also,
within
each
hybrid
type
there
exists
a
wide
range
of
configurations
of
components,
in
size
and
type.
The
emergence
of
this
new
family
of
hybrid
vehicles
has
necessitated
a
new
component
to
vehicle
development,
the
Vehicle
Supervisory
Controller
(VSC).
The
VSC
must
determine
and
deliver
driver
torque
demand,
dividing
the
delivery
of
that
demand
from
the
multiple
energy
storage
systems
as
a
function
of
efficiencies
and
capacities.
This
control
component
is
not
commonly
a
standalone
entity
in
traditional
internal
combustion
vehicles
and
therefore
presents
an
opportunity
to
apply
a
systems
engineering
approach
to
hybrid
vehicle
systems
and
VSC
control
system
development.
A
key
non-‐functional
requirement
in
systems
engineering
is
reusability.
A
common
method
for
maximising
system
reusability
is
a
Reference
Architecture
(RA).
This
is
an
abstraction
of
the
minimum
set
of
shared
system
features
(structure,
functions,
interactions
and
behaviour)
that
can
be
applied
to
a
number
of
similar
but
distinct
system
deployments.
It
is
argued
that
the
employment
of
RAs
in
hybrid
vehicle
development
would
reduce
VSC
development
time
and
cost.
This
Thesis
expands
this
research
to
determine
if
one
RA
is
extendable
to
all
hybrid
vehicle
types
and
combines
the
scientific
method
with
the
scenario
testing
method
to
verify
the
reusability
of
RAs
by
demonstration.
A
set
of
hypotheses
are
posed:
Can
one
RA
represent
all
hybrid
types?
If
not,
can
a
minimum
number
of
RAs
be
defined
which
represents
all
hybrid
types?
These
hypotheses
are
tested
by
a
set
of
scenarios.
The
RA
is
used
as
a
template
for
a
vehicle
deployment
(a
scenario),
which
is
then
tested
numerically,
thereby
verifying
that
the
RA
is
valid
for
this
type
of
vehicle.
This
Thesis
determines
that
two
RAs
are
required
to
represent
the
three
hybrid
vehicle
types.
One
RA
is
needed
for
series
hybrids,
and
the
second
RA
covers
parallel
and
compound
hybrids.
This
is
done
at
a
level
of
abstraction
which
is
high
enough
to
avoid
system
specific
features
but
low
enough
to
incorporate
detailed
control
functionality.
One
series
hybrid
is
deployed
using
the
series
RA
into
simulation,
hardware
and
onto
a
vehicle
for
testing.
This
verifies
that
the
series
RA
is
valid
for
this
type
of
vehicle.
The
parallel
RA
is
used
to
develop
two
sub-‐types
of
parallel
hybrids
and
one
compound
hybrid.
This
research
has
been
conducted
with
industrial
partners
who
value,
and
are
employing,
the
findings
of
this
research
in
their
hybrid
vehicle
development
programs.