CERES > School of Applied Sciences (SAS) (2006-July 2014) > PhD, EngD and MSc by research theses (School of Applied Sciences) >

Please use this identifier to cite or link to this item: http://dspace.lib.cranfield.ac.uk/handle/1826/7671

Document Type: Thesis or dissertation
Title: Thermal Performance of a Multi-Axis Smoothing Cell
Authors: Georgiou, Charalambos Andrew
Supervisors: Comley, Paul
Shore, Paul
Issue Date: May-2011
Abstract: Multi Axis Robots have traditionally been used in industry for pick and place, de-burring, and welding operations. Increasing technological advances have broadened their application and today robots are increasingly being used for higher precision applications in the medical and nuclear sectors. In order to use robots in such roles it is important to understand their performance. Thermal effects in machine tools are acknowledged to account for up to 70% of all errors (Bryan J. , 1990) and therefore need to be considered. This research investigates thermal influences on the accuracy and repeatability of a six degree of freedom robotic arm, which forms an integral part of a smoothing cell. The cell forms part of a process chain currently being developed for the processing of high accuracy freeform surfaces, intended for use on the next generation of ground based telescopes. The robot studied was a FANUC 710i/50 with a lapping spindle the end effector. The robot geometric motions were characterised and the structure was thermally mapped at the latter velocity. The thermal mapping identified the key areas of the robot structure requiring more detailed analysis. Further investigation looked into thermal variations in conjunction with geometric measurements in order to characterise the robot thermal performance. Results showed thermal variations of up to 13ºC over a period of six hours, these produced errors of up to 100μm over the 1300mm working stroke slow. Thermal modelling carried out predicted geometric variation of 70μm to 122μm for thermal variations up to 13ºC over a period of six hours. The modelling was 50% to 75% efficient in predicting thermal error magnitudes in the X axis. With the geometric and modelling data a recommendation for offline compensation would enable significant improvement in the robots positioning capability to be achieved.
URI: http://dspace.lib.cranfield.ac.uk/handle/1826/7671
Appears in Collections:PhD, EngD and MSc by research theses (School of Applied Sciences)

Files in This Item:

File Description SizeFormat
Charalambos_Andrew_Georgiou_Thesis_2011.pdf6.83 MBAdobe PDFView/Open

SFX Query

Items in CERES are protected by copyright, with all rights reserved, unless otherwise indicated.