GNSS performance modelling for high interrity aircraft applications

Date published

2012-01

Free to read from

Journal Title

Journal ISSN

Volume Title

Publisher

Cranfield University

Department

Type

Thesis or dissertation

ISSN

Format

Citation

Abstract

Till recently, no significant attempts have been made of developing Aircraft Based Augmentation System (ABAS) architectures capable of generating integrity signals suitable for safety-critical GNSS applications and no commercial ABAS products are available at present. The aim of this research is to support the design a system that generates integrity signals suitable for GNSS application. The conceptual design and key mathematical models were recently developed by the Italian Air Force Experimental Flight Test Centre (CSV-RSV) [1, 2]. Such a system, would be able to provide steering information to the pilot, allowing for real-time and continuous integrity monitoring, avoidance of safety/mission-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. The key elements addressed in this thesis are the development of a CATIA model for military and civil aircraft, supporting antenna obscuration and multipath analysis. This is to allow the ABAS system to generate suitable integrity flags when satellites signals are lost. In order to analyse the GNSS signal loss causes, the GNSS constellation models, the flight dynamics models, fading models, multipath models, Doppler shift models, and GNSS receiver tracking technology previously developed by CSV-RSV, are considered in this research.

Description

Software Description

Software Language

Github

Keywords

GNSS, Integrity Flag, Obscuration, Doppler Shift, Multipath, Fading, Receiver Tracking

DOI

Rights

© Cranfield University 2012. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright owner.

Relationships

Relationships

Supplements

Funder/s