Life extension techniques for aircraft structures-Extending durability and promoting damage tolerance through bonded crack retarders

Date published

2011-12-31T00:00:00Z

Free to read from

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Department

Type

Conference paper

ISSN

Format

Citation

P.E. Irving, X. Zhang, J. Doucet, D. Figueroa-Gordon, M. Boscolo, M. Heinimann, G. Shepherd, M.E. Fitzpatrick, D. Liljedahl. Life extension techniques for aircraft structures-Extending durability and promoting damage tolerance through bonded crack retarders. ICAF 2011 Structural Integrity : Influence of Efficiency and Green Imperatives : Proceedings of the 26th Symposium of the International Committee on Aeronautical Fatigue. Canada, pp753-770. Ed. Jerzy Lomorowski

Abstract

This paper explores the viability of the bonded crack retarder concept as a device for life extension of damage tolerant aircraft structures. Fatigue crack growth behaviour in metallic substrates with bonded straps has been determined. SENT and M(T) test coupons and large scale skin-stringer panels were tested at constant and variable amplitude loads. The strap materials were glass fibre polymer composites, GLARE, AA7085 and Ti-6Al-4V. Comprehensive measurements were made of residual stress fields in coupons and panels. A finite element model to predict retardation effects was developed. Compared to the test result, predicted crack growth life had an error range of -29% to 61%. Mechanisms and failure modes in the bonded strap reinforced structures have been identified. The strap locally reduces substrate stresses and bridges the crack faces, inhibiting crack opening and reducing crack growth rates. In the absence of residual stress, global stiffness ratio accounts for effects of both strap modulus and strap cross section area. In elevated temperature cure adhesives, retardation performance was best in aluminium and GLARE strap materials, which have the closest thermal expansion coefficient to the substrate. Strap materials of high stiffness and dissimilar thermal expansion coefficient such as titanium had poor retardation characteristics.

Description

Software Description

Software Language

Github

Keywords

DOI

Rights

Relationships

Relationships

Supplements

Funder/s