Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules

Show simple item record

dc.contributor.author Altintas, Zeynep -
dc.contributor.author Uludag, Yildiz -
dc.contributor.author Gurbuz, Yasar -
dc.contributor.author Tothill, Ibtisam E. -
dc.date.accessioned 2012-04-18T23:02:27Z
dc.date.available 2012-04-18T23:02:27Z
dc.date.issued 2012-01-27T00:00:00Z -
dc.identifier.citation Zeynep Altintas, Yıldız Uludag, Yasar Gurbuz, Ibtisam Tothill. Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Analytica Chimica Acta 712 (2012) 138–144
dc.identifier.issn 0003-2670 -
dc.identifier.uri http://dx.doi.org/10.1016/j.aca.2011.11.026 -
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/7102
dc.description.abstract The immobilisation of biological recognition elements onto a sensor chip surface is a crucial step for the construction of biosensors. While some of the optical biosensors utilise silicon dioxide as the sensor surface, most of the biosensor surfaces are coated with metals for transduction of the signal. Biological recognition elements such as proteins can be adsorbed spontaneously on metal or silicon dioxide substrates but this may denature the molecule and can result in either activity reduction or loss. Self assembled monolayers (SAMs) provide an effective method to protect the biological recognition elements from the sensor surface, thereby providing ligand immobilisation that enables the repeated binding and regeneration cycles to be performed without losing the immobilised ligand, as well as additionally helping to minimise non-specific adsorption. Therefore, in this study different surface chemistries were constructed on SPR sensor chips to investigate protein and DNA immobilisation on Au surfaces. A cysteamine surface and 1%, 10% and 100% mercaptoundecanoic acid (MUDA) coatings with or without dendrimer modification were utilised to construct the various sensor surfaces used in this investigation. A higher response was obtained for NeutrAvidin immobilisation on dendrimer modified surfaces compared to MUDA and cysteamine layers, however, protein or DNA capture responses on the immobilised NeutrAvidin did not show a similar higher response when dendrimer modified surfaces were used. en_UK
dc.publisher Elsevier Science B.V., Amsterdam. en_UK
dc.title Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules en_UK
dc.type Article -


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics