CERES > Cranfield Health > Staff publications - Cranfield Health >

Please use this identifier to cite or link to this item: http://dspace.lib.cranfield.ac.uk/handle/1826/7102

Document Type: Article
Title: Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules
Authors: Altintas, Zeynep
Uludag, Yildiz
Gurbuz, Yasar
Tothill, Ibtisam E.
Issue Date: 2012
Citation: Zeynep Altintas, Yıldız Uludag, Yasar Gurbuz, Ibtisam Tothill. Development of surface chemistry for surface plasmon resonance based sensors for the detection of proteins and DNA molecules. Analytica Chimica Acta 712 (2012) 138–144
Abstract: The immobilisation of biological recognition elements onto a sensor chip surface is a crucial step for the construction of biosensors. While some of the optical biosensors utilise silicon dioxide as the sensor surface, most of the biosensor surfaces are coated with metals for transduction of the signal. Biological recognition elements such as proteins can be adsorbed spontaneously on metal or silicon dioxide substrates but this may denature the molecule and can result in either activity reduction or loss. Self assembled monolayers (SAMs) provide an effective method to protect the biological recognition elements from the sensor surface, thereby providing ligand immobilisation that enables the repeated binding and regeneration cycles to be performed without losing the immobilised ligand, as well as additionally helping to minimise non-specific adsorption. Therefore, in this study different surface chemistries were constructed on SPR sensor chips to investigate protein and DNA immobilisation on Au surfaces. A cysteamine surface and 1%, 10% and 100% mercaptoundecanoic acid (MUDA) coatings with or without dendrimer modification were utilised to construct the various sensor surfaces used in this investigation. A higher response was obtained for NeutrAvidin immobilisation on dendrimer modified surfaces compared to MUDA and cysteamine layers, however, protein or DNA capture responses on the immobilised NeutrAvidin did not show a similar higher response when dendrimer modified surfaces were used.
URI: http://dx.doi.org/10.1016/j.aca.2011.11.026
Appears in Collections:Staff publications - Cranfield Health

Files in This Item:

File Description SizeFormat
Development_of_Surface_Chemistry_for_SPR_based_Sensors-2012.pdf634.46 kBAdobe PDFView/Open

Items in CERES are protected by copyright, with all rights reserved, unless otherwise indicated.